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ABSTRACT

We consider the consecutive k-of-n system in which there are n
components linearly ordered. Each component either functions or fails
and the system is said to bejfailed if any k consecutive components
are failed. Let r(p) = r(pl, ..., pn ) denote the probability that

the system does not fail given that the components are independent,
component i functions with probability p! , i - 1, ..., n . The

function r(p) is called the reliability function.
We study the above system both when the components are linearly

ordered and also when they are arranged in a circular order. In
Section 2-, we consider the case where all pi, are indentical and pre-

sent a recursion for obtaining the reliability of a consecutive k-of-n
in terms of the reliability of a consecutive k - 1 of n system.
This yields simple explicit formulas when k is small and differs from
the recursionfobtained in [l].: -a--Section 3, we show how upper and
lower bounds on r(p) can be simply obtained. In Section 4, we con-
sider a dynamic version in which each component independently functions
for random time having distribution F . We show that when F is
increasing failure rate (IFR), then system lifetime is also IFR only in
the circular case when k = 2 . " In Section 5, we consider a sequential
optimization model in the linear k = 2 case. In this model, components
are put in place one at a time with complete knowledge as to whether
the previous component has worked or not. -We show that the optimal
policy is such that whenever a success oirs we follow it with the
worst of the remaining components and wheneyer a failure occurs we
follow it with the best of the remainder. -In Section 6, we consider
a nonsequential version of this. That is, the ordering must be fixed
in advance.



ON THE CONSECUTIVE k-of-n SYSTEM

by

C. Derman, Columbia University

G. J. Lieberman, Stanford University

S. M. Ross, University of California, Berkeley

1. INTRODUCTION

Chiang and Niu introduced (see [1]) the consecutive k-of-n system

in which there are n components linearly ordered. Each component

either functions or fails and the system is said to be failed if any

k consecutive components are failed. Let r(p) = r(pl, . pn)

denote the probability that the system does not fail given that the

components are independent, component i functions with probability

Pi 5 i = 1, ..., n . The function r(p) is called the reliability

function.

We study the above system both when the components are linearly

ordered and also when they are arranged in a circular order. In

Section 2, we consider the case where all p, are identical and pre-

sent a recursion for obtaining the reliability of a consecutive k-of-n

in terms of the reliability of a consecutive k - 1 of n system.

This yields simple explicit formulas when k is small and differs from

the recursion obtained in [1]. In Section 3, we show how upper and

lower bounds on r(p) can be simply obtained. In Section 4, we con-

sider a dynamic version in which each component independently functions

for a random time having distribution F . We show that when F is

increasing failure rate (IFR), then system lifetime is also IFR only in

the circular case when k - 2 . In Section 5, we consider a sequential

optimization model in the linear k - 2 case. In this model, components

_I;
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are put in place one at a time with complete knowledge as to whether

the previous component has worked or not. We show that the optimal

policy is such that whenever a success occurs we follow it with the

worst of the remaining components and whenever a failure occurs we

follow it with the best of the remainder. In Section 6, we consider

a nonsequential version of this. That is, the ordering must be fixed

in advance.

~.I
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2. THE RELIABILITY FUNCTIONS WHEN pi E p

Before computing the reliability functions, we consider a com-

binatorial problem.

Suppose that j identical balls are to be placed in r distinct

urns. Let N J,r(m) denote the number of ways this can be done subject

to the requirement that at most m balls are placed in any one urns.

When m = 1 , this amounts to selecting j of the r urns, and so,

Njr(l) -(r).

When m =2, we can select i of the urns to contain 2 balls in (r)
ways and then we can select j - 2i of the remaining r - i urns to

each contain 1 ball. Hence,

Nj r(2) = ( = (r)(r r i)
1 i i

In general, by the same argument, we obtain the following recursion.

Nj (M)= (r)Nj~miri(m - 1)

J,r . _m -i

Consider now the linear model when all the components have the

same probability p of functioning. The number of ways that exactly

j of the components can fail and the system function is equal to

Nj,n j+l(k - 1) which can be seen by having the urns correspond to

the places between successes and with one to the left of the first

and one to the right of the last success. For instance if k - 2

j = 3 , n 5 , then the 3 urns are

L s IIs Li

... i3
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As each arrangement of j failures and n - j successes has prob-

ability pn-J(, - p)J , we see that

Theorem 1:

In the linear case

rL(p) = j N j+l(k - 1 )pn-J(l - p)J
J

Thus for instance,

(2.1) rL(P) =J (n - j + nj(l -)j when k 2

(2.2) rL(P)= (n - j + l)(n - j + 1 - pn-j(1 - when k 3
(22 r.Lx)i j - 2i pnJlwe

J1.

Remark:

The formula 2.1 was derived by Chiang and Niu in [1] by considering

the number of ways that, of j failures and n - j successes, at least

one success can be put between any two failures. This approach, however,

does not seem to generalize beyond k = 2 as well as our approach which

attempts to place the failures between the successes (as opposed to the

reverse).

In the case of a circular system, choose any point on the circle

between two components and let N and N denote respectively the

number of failures observed until the first success, if we travel res-

pectively in a clockwise or counterclockwise direction. Hence,

P{N = j1 = P{N - J1 = p(l - p)Ji1 , j - 0,1, ..., n
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Also, for i < n - 1 , P{N + N = i} can be computed as if N and

N were independent, and so

PIN + N = i} = (i + 1)(1 - p)ip2 , i = 0,1, ... , n - 2

Conditioning on N + N yields.

Theorem 2:

In the circular case

2 p)1 ir L (r (p) = p I (i + 1)(i - p)r , n - i - 2)

c ~ i=OL

where rL(p,j) is the probability a j component linear system func-

tions when each component functions with probability p

Proof:

Given that N + N = i , there is a run of i consecutive

failures followed by successes on both sides. Hence, the remainder

of the system acts as a n - i - 2 component linear system.11

Remark:

Another way of obtaining the reliability is to let F. denote
1

the event that components i,i+l, ..., i+k-i are all failed, i 1,

S..,n-k + I. Then

1 - r(p) = P(U F.)
i

= P(Fi) -i P(FiFj ) +
i<j
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and, for instance,

k pL P(F ) (n - k + 1)q ,(q =1 -p

SP(F .F. q qk+l (n k) + (n -k- 1)q k+
2 + (n- k 2)- +

i<j i

+ + (n - 2k + 1q2

and so on.

m. - ,
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3. BOUNDS ON THE RELIABILITY FUNCTION

Chiang and Niu presented the minimal cut lower bound in [l). Any

k consecutive components constitute a minimal cut set (there are

n - k + 1 in the linear case and n in the circular case). Letting

Ei denote the event that at least one component of the ith minimal

cut set functions i = 1, ... , r , then

r(p) - P(E1E2 ... Er)

- P(E1 )P:E 2 I EI ) ... P(E r I El, ... , Er)

The minimal cut lower bound uses the inequality

P(Ei I E1, ... , Ei_ ) > P(Ei )

Thus, in the linear case, with qj = 1 - pj

n-k+l i+k-i
rL(P) > E P(Ei) 1 - 1 qj

and, in the circular case

n / i+k-i 1
rc(p) > - TI qj

iml J=i

where for j > n , qj E qj-n

We can improve these bounds by computing some of the joint prob-

abilities. For example,

-- - ---
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c'

1 1 - ( 1 U2

k k+l k+l
n -q- q. + R q.

j =i j=2 j=l '

and, provided k > 2,

P(EIE2E3) = 1 - P(E U E m3)

k k+l k+2
1 - E q - T q.- TI q.

1 2 3 3

k+l k+2
+ T q. + T q.

1 2

Thus, for instance using this last identity, we can improve the bound

on rL(P) to

n-k+l ( i+k-i
rL(p) > P(E1E2 E3) k1 1 - ji qj)

An upper bound for r(p) can be obtained by looking at minimal

path sets--a minimal set of components whose functioning ensures that

the system functions. However, as it is difficult to determine all

the minimal path sets (in the linear case a vector of l's and O's

will be a minimal path vector if any k consecutive elements contains

at least one 1 and any k + 1 consecutive elements contains no more

then two l's) no effective upper bound was presented in [1]. To

generate an upper bound, we first need the following lemma which was

used for a special model in [2). The proof presented in [2] differs

from the one we give.

......
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Lemma 3:

If N is a nonnegative random variable, then

PIN > 0) > E2 (N)/E(N
2)

Proof:

E(N 2) =E(N2  N > 0)P(N > 0)

> (E(N N > 0))2p (N > 0) by Cauchy-Schwarz

(E(N)) 2

P(N > 0)

To apply Lemma 3 let N denote the number of minimal cut sets

that are down. That is,

(3.1) N = I.
1

where

1 if all components of the ith
minimal cut set are failed

0 otherwise

As

r(p) = 1 - P{N > 0)

we see that

2
r(p) < 1- -

-
_ -- E[N2 ]
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It is straightforward to compute E[N]

n-k+l i+k-l
I fn q.i in the linear case

i.=l J-i J
E[N) =

n i+k-l
1 11 q. in the circular case

i=l j-i

where again q E q. . As

E[N 2  E I I + I I.

=ZE[I + I E[I.I.
i~j 3i

2
it is also straightforward, though messier, to compute E[N I In

the circular case when all the P are equal, the computations simplify.

We first need the following lemma from [2].

Lemma 4:

Let N denote the number of events AV, ... , A rthat occur. If

rr

then

E[N jA1  - E[N 2]/E[N]

Pro,



T1. -1

Proof:

E[N A1] = jP{N = j I AI }

= j JP{A 1  N = j}P{N J J)/P(A1 )

= j2P{N J}/rP(AI)

=E[N 2 ] rP(AI1)

Also,

P(A1 ) = 1 P(Al I N = j)P(N = j)
J

= E[N]/r

which completes the proof. 1i

In the circular case if we let A. , i 1 1, ..., n denote the1

event that all the components of the ith minimal cut set are failed,

then it is clear that the conditions of Lemma 4 are satisfied when

P. E p . As

E[N I A1] = 1+ 2[l - p + (1 - p)2 + + (i - k-l

k+ (n - 2k + 1)(i - p)

We see from Lemmas 3 and 4:

Theorem 5:

r (p). 1 -n(l - p)k

p 1 + (n - 2k + 1)(l - p) k + 2 (L:- ) [ - (1 - k-l
p
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4. A DYNAMIC VERSION

In this section, we suppose that all n components are initially

working and continue to do so for a random time having distribution F

In addition, we suppose that the component lifetimes are independent and

that F is an increasing failure rate (IFR) distribution. The latter

statement means that

(t) .F'(t) is increasing in t
1 - F(t)

Let T denote the time at which the system fails. We are interested

in determining when, if ever, T has an IFR distribution.

Theorem 6:

With k = 2 , in the circular case, T is IFR.

Proof:

Let N(t) denote the number of component failures at t Then
the failure rate function of T--call it X T--is given by

XT(t) 2E[N(t) I T > t]X(t)

where X(t) is the failure rate function of F

However, Schechner has shown in [3] that in any structure in which

all component lifetimes are independent and identically distributed

N(t) T > t is stochastically increasing in t

Hence,
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E[N(t) IT > t] + t

and the result follows. jj

There is no analog to Theorem 6 in the linear case. For instance,

if n = 3 , k = 2 and the component lives are exponential then if the

system is still working at some moderate time t , it has a good chance

of being in state 1"3 (where a circled number means that component

has failed). However, if additional time passes and the system is still

working, then it is probably either in 103 or in Q 2 0. As Z2 G

is the better state as far as having a longer additional life, it follows

intuitively (and, of course, can be numerically checked) that T is not

IFR. A counterexample to T being IFR in the circular case is obtained

when n = 6 , k = 3 . When four components are down and the system is

still working, the state is of the form

040

where a circled component means that it is failed. As the above state is

at least as good (as far as additional life time) as any state where only

three are failed and the system is working and strictly better, than those

of the form

602

040

it follows that the system is better off if it is working and four are

down than it is when three are down. Thus, again, T will not be IFR.
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5. A SEQUENTIAL OPTDIIZATION PROBLEM

Suppose that we have n components with reliabilities P1  ... I P n

The components are to be put into use one at a time. When put in use, we

immediately discover whether or not they work and can thus use this informa-

tion in deciding upon the next component. We say that the system fails if

we ever get two component failures in succession. Thus, we have a sequen-

tial version of the linear model with k - 2 . We are interested in determin-

ing the dynamic ordering of components so as to minimize the probability

of a failed system.

Theorem 7:

Suppose P1 < P2 < "'" < P . The optimal strategy is to first put

component I into use. Afterwards, if the most recent component in use has

failed, then the next one should be the one with highest reliability; if

the most recent one has succeeded, then the next one should be the one with

lowest reliability.

Proof:

Consider any policy which doesn't follow the advice of the alleged

optimal policy--call it policy if and suppose first that it differs at

some time when the last component has failed. Specifically suppose that

a component has just failed and among the remaining components are i

and j where Pi < P and suppose r calls for installing component

i . We show that w cannot be optimal by considering a new policy r'

which calls for first putting component j in, then acting as r would

if component i was put in, except that at the time that r would put

- -- ~ --
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j in v' puts i instead. Now if i and j both work or both fail

or if the components installed by w between i and j contain two

consecutive failures or end with a failure, then r and m' are iden-

tical. So suppose that of i and j exactly one fails and one works

and that the ones between i and j have no two consecutive failures

and ends in a success. Now if i fails and j succeeds, then

under T : state = "failed" under 7' : state = a

whereas, if i succeeds and j fails, then

under 7 : state - a under ir' : state = "failed"

where a is the state that we have just had a failure and all components

except i , j and those put in by w between i and j remain. As

a is clearly a better state than "failed" and as the conditional prob-

ability,,of i failing and j succeeding given exactly one failing is

higher than the reverse probability it follows that T' is better than 71

The above shows that it is optimal to follow a failed component with

the best of the remaining ones.

It remains to prove that it is optimal to follow a success with the

lowest reliability component--or equivalently, that the very first com-

ponent used should be the one with lowest reliability. We will prove

this by induction on n . As it is obvious for n I , 2 , 3 , assume

for n - 1 , and consider an n component problem. Suppose i is

initially put in when P > P min P and suppose that an optimal
i 1 1j

policy is followed thereafter. Now if i succeeds, then the next com-

ponent will be 1 by the induction hypothesis, if i fails, then the

next component will be the best (by the first part of the proof) and
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then it will be followed by 1 (by the induction hypothesis, since if in

this case the best one fails, it is irrelevant which component follows it).

Hence, the policy--call it 7--is such that

i success - i , 1

i failure - i , n , 1

where P = max P. . Also note that if i is a success and 1 a failure
n 3

then by the first part of the proof 7 will then use component n

Let us compare this with the policy--say ir'--that initially puts 1

in and then

1 success 1 , i

1 failure 1 , n , i

and then continues optimally.

If 1 and i are both successes or both failures, then the two

policies do equally well. Otherwise:

if i is a success and 1 a failure,

under n : success, failure, n

under 7' : failure, n , success,

if i is a failure and 1 a success,

under 7 : failure, n , success

under T' : success, failure, n

- _____________________________________________ --- . -.-*------
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Hence, in all the above cases, n must be a success or else the system

fails. When n is a success, both policies do identically well.

Thus, it is also optimal to start with component 1 and the proof

is complete.

" A . .. . . .-
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6. THE NON-SEQUENTIAL OPTIMIZATION PROBLEM, k = 2

As in Section 5 suppose we have n components with reliabilities

PIP2 .... Pn with P1 < P2 <  < " - . The system is to be con-

structed at one time so as to maximize its reliability. That is, if

we let p denote a permutation of the first n positive integers, the

problem is to find a permutation ' such that

r( ) = max r()

where r() is the reliability of the system arrangement p(i),4(2),

. (n)

Let q = ' i , ..., n . Thus, q > q2 q " n

For the case n f 2

r(i) = 1 - qp(1 )q (2 )

and either of the two possible arrangements is optimal. For the case

n=3,

n 1 3 ,

r( ) =f  I - q (1)q (2) - q (2 )q (3) + qo(1)qp (2 )qo(3 )

A permutation p that minimizes

q*(1)q (2) + qq@(2 )q (3)

maximizes r() We may verify that 'P (1) - 1 , ' (2) - 3 , ' (3) - 2

is such a permutation. For the case n = 4 , after some elementary

algebra,

r(y)- 1 - [q (1)q( 2 ) + q*(3 )qp( 4 ) + q*( 2 )q (3)(1 - q (1 ) - q*(4 ))]

.1- ______________________________
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The permutation p (1) = 1 , ip (2) 4 , 4 (3) = 3 , 4 (4) = 2 min-

imizes the sum of the first two terms within the brackets while min-
*

imizing, at the same time, the last term. Thus 4 maximizes r(p)

Now, for any n > 1 , we define p according to the following

scheme: 4(i) = I , 4(n) = 2 , 4(2) = n , '(n - 1) = n - I , 4(3) - 3

i(n - 2) 4 , 4(4) = n - 2 , i(n - 3) = n - 3 , ... etc. For n = 2

3 , 4 , p = ' . We conjecture, but have been unable to prove, that

w = 'p is an optimal permutation for all n > 2

We turn our attention to the number of minimal cuts sets that fail,

N , and consider

S(4) = E N

n
= q p (i) q4 (' l

minimizes S(*) ; that it does is a consequence of the following.

Proposition:

Suppose n > 4 and 4 satisfies one of the following conditions:

(i) *(1) - n , 4(n) = n - 1 , either *(2) 0 1 or *(n - 1) # 2

(ii) ip(l) = 1 , 4(n) = 2 , either *(2) 0 n or *(n - 1) # n - 1

then, in each case, there exists a permutation 4' where 4'(l) - ()

*'(n) = *(n) and in case (i) V'(2) - 1 , *'(n - 1) - 2 or in case (ii)

*'(2) = n , i'(n - 1) - n - 1 such that S(*') < S(*)

Proof of (i):

Suppose 4(2) 1 . Let k be such that 4(k) 1 . Note that

Ow7
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1 < k < n .Define ~pby

P(j) =*(k j + 2) , j =2, .. ,k

p(j) - Q() ,otherwise.

Then

S4) - q(p n=q 2 - ql) + q-(~)(, q ()

= (qn q 1 (k+l) )(q*(2) - ql)

>0.

Now, if p(n - 1) =2 , let 4'= .If -p(n - 1) #2 then there

is a k ,2 < k < n ,such that p(k) = 2 .Define ip' by

='j Tp(n + k - j - 1) , j k, ... , n - 1

40(j) = (j) , otherwise.

Then

S(2p -S ) =q_ (q 2 - q_ ) + q nl(q q q 2 )

I'(k-l) 4(n-l) iP(n-l)

=(q_ - 1 )(q 2  q_
*(k-l)*(n-l)

>0.

Therefore

SMip - SW4) = SOP) - S64) + S(T) -Si'

>0.

if *(2) =1 ,define 4' as above using -4
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The proof of (ii) follows from a similar construction.

Without changing the problem we can regard the system whose

expected number of minimal cuts is to be minimized as consisting of

n + 2 components with pn+l = Pn+2 1 ; the two additional perfectly

reliable components have assigned positions at the extremes. From

this point of view, upon repeated application of the proposition,

initially invoking condition (i), it follows that i minimizes S(P)
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